Some Hilbert spaces related with the Dirichlet space
نویسندگان
چکیده
منابع مشابه
Function spaces related to the Dirichlet space
H ·H := ̆ h = fg : f, g ∈ H ̄ = H ←↩ H is the product space of H2, by inner/outer factorization and Cauchy-Schwarz inequality. It is interesting, then, to find the dual space of H1. C. Fefferman [7] proved that, under the H2 paring (with some care), (H2 ·H2)∗ = (H1)∗ = BMO∩H(D) is the space of the analytic functions with bounded mean oscillation. The definition of BMO, born out of a problem in el...
متن کاملHilbert Spaces of Dirichlet Series
We consider various Hilbert spaces of Dirichlet series whose norms are given by weighted l2 norms of the Dirichlet coefficients. We characterize the multiplier algebras for some of these spaces. 0 Introduction Let w = {wn}n=n0 be a sequence of positive numbers. In this paper we are concerned with Hilbert spaces of functions representable by Dirichlet series: H w = {
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولHilbert Space Embedding for Dirichlet Process Mixtures
This paper proposes a Hilbert space embedding for Dirichlet Process mixture models via a stick-breaking construction of Sethuraman [6]. Although Bayesian nonparametrics offers a powerful approach to construct a prior that avoids the need to specify the model size/complexity explicitly, an exact inference is often intractable. On the other hand, frequentist approaches such as kernel machines, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Concrete Operators
سال: 2016
ISSN: 2299-3282
DOI: 10.1515/conop-2016-0011